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Outline

Definition of voter model and duality with coalescing random walks

Voter models on “Complex Networks" (Facebook)

Definition of Latent voter model (iPad) and mean field equations

Approximate duality with branching coalescing random walk

Limiting behavior
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Voter model on a graph

ξt(x) ∈ {0, 1} is the opinion of x at time t.
E.g., 1 = Democrat, 0 = Republican

At times T xn , n ≥ 1 of a rate 1 Poisson process, voter x decides to
change her opinion independent of other voters.
At time t = T xn picks a neighbor yxn at random and ξt(x) = ξt(yxn).
For a convenient construction of the process we draw an arrow
from (x, T xn ) to (yxn, T

x
n ).

Arrows point to the opposite direction of the flow of information.
But this choice will be useful in defining a dual process.
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Graphical Representation
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What is x at time t?
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What is x at time t?

To compute the state of x at time t we work backwards in time to
define ζx,ts , s ≤ t.

ζx,tr = x for r < s, the first time so that t− s = T xn for some n.

Then set ζx,ts = yxn, and repeat.

For all 0 ≤ s ≤ t, ξt(x) = ξt−s(ζ
x,t
s ).

Follow the arrow. Jump to the neighbor you imitated.

ζx,ts is a random walk that jumps x→ y at rate 1/d(x)
if y is a neighbor of x.
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Coalescing random walks
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Duality

ζB,ts = {ζx,ts : x ∈ B} for s ≤ t. (Dual rw’s)
Let ηAt = {x : ξt(x) = 1} when A = {x : ξ0 = 1}.
Voter model written as a set-valued process.

{ηAt ∩B 6= ∅} = {ζB,tt ∩A 6= ∅}

Define ζBs , s ≥ 0 so that ζBs =d ζ
B,t
s for s ≤ t

P (ηAt ∩B 6= ∅) = P (ζBt ∩A 6= ∅)

ζBt is a coalescing random walk: particles move independent until
they hit, and coalesce to one when they hit.
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Finite graphs G

The voter model on a finite graph is a finite Markov chain with two
absorbing states (all 0’s and all 1’s) and so eventually it reaches
complete consensus.

Q. How long does it take?

Let X1
t and X2

t be independent random walks on the graph.

Let A = {(x, x) : x is a vertex of the graph},
TA = inf{t : X1

t = X2
t }

How big is TA when X1
0 and X2

0 are randomly chosen?

This is a lower bound on the time to consensus and is the right
order of magnitude.
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Write Pπ for the law of (X1
t , X

2
t ), t ≥ 0 when X1

0 and X2
0 are

independent with distribution π.

Proposition 23 in Chapter 3 Aldous and Fill’s book on Reversible
Markov Chains.

sup
t
|Pπ(TA > t)− exp(−t/EπTA)| ≤ τ2

EπTA

where τ2 is the relaxation time, i.e., 1/spectral gap

Why? Make the stronger assumption that the mixing time
tn � EπTA. In the limit we have the lack of memory property.

P (TA > (t+ s)EπTA|TA > sEπTA) ≈ P (TA > tEπTA)
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Computing Eπ(TA)

For the underlying discrete chain, where at each step one particle
is chosen at random and allowed to jump,

1/π(A) = EA(TA)
= o(n) + EA(TA|TA � tn)PA(TA � tn)
= o(n) + Eπ(TA)PA(TA � tn),

which implies

Eπ(TA) ≈ 1
π(A)

· 1
PA(TA � tn)

.

Naive guess for waiting time must be corrected by multiplying by
the expected clump size. Have a geometric number of quick
returns with “success probability" PA(TA � tn).

×× ××× × ×××
clump
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Random Regular Graphs

Sood and Redner (2005) have considered graphs with a
power-law degree distribution. Other locally tree-like graphs have
same qualitative behavior..

Rancom regular graph is locally a tree with degree r.

Distance between two random walks, when positive, increases by
1 with probability (r − 1)/r and decreases by 1 with prob. 1/r

PA(TA � tn) = 1− 1/(r − 1) = (r − 2)/(r − 1) for r ≥ 3.

If each particle jump at rate 1, then

Eπ(TA) ≈ 1
2

1
π(A)

· 1
PA(TA � tn)

=
n(r − 1)
r − 2

· 1
2
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Summary for voter model on finite graphs

Eventually it reaches complete consensus.

The consensus time for locally-tree like random graphs on n
vertices having degree distribution with finite second moment is
O(n).

Sood and Redner (2005) have considered graphs with a
power-law degree distribution. In all cases, the consensus time is
at most linear in the number of vertices.

Starting from product measure, the quasi-stationary density of
state 0 is the same as the initial proportion.
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Latent Voter Model: Motivation

Lambiottei, Saramaki, and Blondel (2009) Phys. Rev. E. 79, paper
046107

Consider the states of the voter model to be 0 = IBM laptop and
1 = iPad. or Blu-Ray versus HD-DVD.

“It is likely that choice of a customer is influenced by his
acquaintances. However it is unlikely that the customer will
replace his equipment immediately after a purchase."

To reflect this, after an opinion change the voter enters an inactive
state that lasts for an exponentially distributed amount of time with
mean 1/λ.
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Mean field equations.

We write + and − instead of 1 and 0 ( or ↑ and ↓ in LSB):

dρ+

dt
= ρa−ρ+ − ρa+(1− ρ+)

dρa+
dt

= −ρa+(1− ρ+) + λ(ρ+ − ρa+)

dρa−
dt

= −ρa−ρ+ + λ(1− ρ+ − ρa−)

From the second equation we see that in equilibrium

0 = −ρa+ + ρa+ρ+ + λρ+ − λρa+

Using these in first equation we find three roots ρ+ = 0, 1/2 or 1

0 =
λρ+(1− ρ+)(1− 2ρ+)
(ρ+ + λ)(1− ρ+ + λ)

S. Chatterjee Latent voter model
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Completing the solution, we see that
If ρ+ = 1 then ρa+ = 1.
If ρ+ = 0 then ρa− = 1.
If ρ+ = 1/2 then ρa+/ρ+ = 2λ/(1 + 2λ).

Straightforward calculations show that the roots with ρ+ = 0 or 1
are unstable while the one with ρ+ = 1/2 is locally attracting.

Three dimensional ODE: (ρ+, ρa+, ρa−).

S. Chatterjee Latent voter model



university-logo

Voter model perturbations

We want to use some techniques similar to those in Cox, Durrett,
and Perkins to study the latent voter model when λ is large.
At each site there is a rate λ Poisson process of “wake-up dots."
For each neighbor y, x consults y at rate 1/d(x) where d(x) is the
degree of x.

Number of consulting times for x between two wake-up dots is
geometric with success probability λ/(λ+ 1). The distribution is:

0 :
λ

1 + λ
1 :

λ

(1 + λ)2
2 :

λ

(1 + λ)3
≥ 3 :

1
(1 + λ)3

Scale time at rate λ and in the limit we can ignore intervals with
three or more arrows.
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Graphical representation for rescaled latent voter
model
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Changes in one interval

If there is only one voting time in an interval between two wake-up
dots then this is a voter event.

�

0

y x

•

•

�

-

0

y x z

•

•

Considering the four cases we see that x will become 1 if and only
at least one of x and y is a 1. (Redner’s vacillating voter model.)
If y is 1 then x flips to 1 but is inactive and ignores z. If y is 0 . . .
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Dual process

To determine the state of x at time λt we work backwards.

In an interval with one arrow x→ y the particle follows the arrow
and jumps, since x imitates y at that time.

In an interval with two arrows, x→ y and x→ z, x stays in the
dual and we add y and z, since we need to know the state of x, y
and z to see what will happen.

S. Chatterjee Latent voter model
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Dual process in the graphical representation
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Dual process in the graphical representation

• wake up dots
at rate λ2

× voting times
at rate λ

• branching wake up
dots at rate ≈ 1

• single wake up
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Schematic diagram of the dual

time
↓

Space
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Limit theorem

For concreteness consider random regular graphs.

Theorem
If log n� λ� n/ log n, where n is the number of vertices of the
random regular graph, then

P (x has state 0 at timeλt)→ 1
2

as n→∞.

Similar result should be true for other locally tree-like random graphs.
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Ingredients for the proof of limit theorem

If the random walks from x, y, z all coalesce then we can ignore
the event since nothing can happen in the branching random walk.
If xy|z or xz|y i.e., two coalesce but avoid the other until time λt
then the situation reduces to an ordinary voter arrow. This is also
true if x|yz.

Let

r1n := P ( all three members of a family coalesce before ε log n jumps),

r2n := P (none of the pairs in the family coalesce before ε log n jumps).

r1n → r1 and r2n → r2 as n→∞, e.g. the limit of r2 is the
probability of no coalescence among three random walks on the
infinite tree with degree r starting from neighboring sites.
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Sketch of the proof of the limit theorem

The integral equation for vt = P (x has state 0 at time λt) is

vt =
∫ t

0
(1− r1)e−(1−r1)s

[
r2

1− r1
{v3
t−s + (1− vt−s)(1− (1− vt−s)2)}

+
1− r1 − r2

1− r1
vt−s

]
ds+ v0e

−(1−r1)t.

A little calculation shows that

v′t = Kvt(1− vt)(1− 2vt) for some constant K = K(r1, r2)
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Consensus time

Theorem
Consensus time is at least nb for any b <∞.

Reason

The dual processes starting from distant vertices are
asymptotically independent.

Using Markov inequality for higher moments of the number of
voters at time λt in state 0, it stays close to its mean with
probability ≥ 1− cn−b for any b <∞.

S. Chatterjee Latent voter model



university-logo

Why is the condition on λ required in the
argument?

The conditions on λ guarantees that with high probability
the particles become uniformly distributed on the graph between
successive branching events,
only those particles which are involved in the same branching
coalesce,
dual starting from distant particles are asymptotically independent.

Future question

Q. What happens if λ is large but O(1)?
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Thank you
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